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Abstract: 

In today’s quantum mechanics and quantum field theory, the observable signature of a symmetry is 

often sought in the form of a selection rule: a missing radiation frequency,  a particle that does not  

decay in another one, a scattering process which fails to take place.  The connection between 

selection rules and symmetries is effected thanks to the mathematical discipline of group theory. In 

the present paper, I will offer an overview of how the productive synergy between selection rules 

and group theory came to be. The first half of the work will be devoted to the emergence of the idea 

of spectroscopic selection rules in the context of the old quantum theory, showing how this notion 

was linked with an interpretive scheme of theoretical nature which, once combined with group 

theory, would bear many fruits. In the second part of the paper, I will focus on the actual encounter 

between selection rules and group theory, and on the person largely responsible for it: Eugene 

Wigner. I will attempt to reconstruct the path which led Wigner, of all people, to be the agent 

effecting this connection..  
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1. Introduction: selection rules and group theory in today's physics 

 

In today's quantum mechanics and quantum field theory, "selection rules" indicate which transitions 

between the states of a given quantum system may or may not occur as an effect of a specific 

perturbation.1 In atomic and molecular spectroscopy, selection rules determine which 

electromagnetic radiation frequencies may be emitted or absorbed by a system as it passes from one 

energy state to another (Herzberg, 1937, pp. 152-161). In quantum field theory, processes of decay 

or scattering of elementary particles are conceived as transitions of the quantum field between 

"particle states" , and  selection rules  express which transitions may occur as a result of strong or 

electro-weak interactions (Martin et al., 1992, pp. 211-215).  

 The existence and the specific patterns of selection rules are usually explained in terms of 

                                                 
1 I wish to thank the anonymous referees for their suggestions on how to improve the present paper. 
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symmetries: when the unperturbed system and the perturbation are both invariant with respect to a 

given transformation, no transition breaking this invariance may occur (Heine, 1960, pp. 1-12, 

Martin et al., 1992, pp. 81-131). For example, if an invariance with respect to a mirror 

transformation is present, no transition can connect states that are mirror images of each other. 

Symmetry arguments of this kind can also be formulated in terms of conservation laws. In the 

previous example, one can say that  states which are mirror images of each other have opposite 

parity and that, when mirror symmetry holds, parity has to be conserved.  

 The connection with symmetries allows to formulate exact predictions for selection rules 

even in those cases where few details are known about the dynamics of a system. In such cases, 

results can be obtained with the help of group theory, a branch of mathematics dealing - among 

other things - with closed sets of transformations (e.g. all rotations, all mirror inversions) and the 

way in which a given set of objects is changed by them (Heine, 1960). For example, group theory 

allows to classify the energy states of complex molecules and to derive the relevant selection rules 

for emission and absorption of  radiation (Bunker et al., 1998, pp. 414-473).  In quantum field 

theory, group theory is an important - and sometimes the only - tool for determining the 

characteristic of particles by studying their decay products (Cheng et al., 1984, pp. 86-124). In 

principle, the same results could be  obtained also by direct computations on a case-by-case basis, 

but in reality it is hard to imagine how some situations might be mastered without the  apparatus of 

group theory. 

 In this paper, I will offer an overview of how the productive synergy between selection rules 

and group theory came to be. The first half of the work will be devoted to the emergence of the 

notion of spectroscopic selection rules in the context of the old quantum theory. The discussion 

aims at showing how the notion of selection rules, far from being a purely empirical, descriptive 

tool, was heavily laden with an interpretive scheme of theoretical nature which, once combined with 

group theory, would bear many fruits. In the second part of the paper, I will focus on the actual 

moment in which the encounter between selection rules and group theory took place, and on the 

person largely responsible for it: Eugene Wigner. Wigner's early work in group theory and quantum 

mechanics has already been dealt with more than once in secondary literature (Chayut, 2001, Mehra 

et al. 2000, pp. 472-499, Scholz, 2006). Thus, it is well known  that  Wigner, when he wrote his 

first group theory papers in 1926-1927, had a grasp of that discipline much smaller than 

mathematicians like Hermann Weyl or John von Neumann. In fact, in 1926 Weyl was already 

reflecting on how to employ group theory to better understand the new quantum mechanics (Scholz, 

2006, pp. 461-469). However, it was Wigner who came to the idea of using it for explaining 

spectroscopic selection rules, while Weyl's reflections took a different - albeit equally productive - 
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direction. In my analysis, I will attempt to reconstruct the path which led Wigner, of all people, to 

be the agent effecting the connection between selection rules and group theory.  

 

 

2. Bohr's frequency condition  (1913) 

 

The generalized notion of "selection rules" ("Auswahlregeln") as we know it today was already 

common in 1926-1927, as shown for example in  Friedrich Hund's manual of spectroscopy (Hund, 

1927, pp. 17-19, p. 27, p. 60). An exhaustive treatment of the emergence of this notion would 

require sifting through and discussing a much broader range of sources than is possible in the 

context of the present paper, and my analysis shall be limited to published papers of the main 

contributors to the historical development. Nonetheless, I believe that even such a rough sketch of 

the subject is worth offering since, until now, historical discussion of the old quantum theory has 

mainly focused on the development of atomic structure, and on the interpretation of specific 

spectroscopic evidence, such as X-ray spectra or the Zeeman effect (Forman, 1968, 1970, Heilbron, 

1964, 1967). With the partial exception of Forman 's (1970) study of Alfred Landé's work on 

Zeeman spectra, no one has addressed the question of when historical actors started regarding 

spectroscopic data as providing experimental evidence in the form of "missing" lines. The starting 

point of my discussion will be Niels Bohr's  trilogy of 1913. Even though in this work no notion of 

selection rules appeared, it contained the two key elements of the scheme discussed in the 

introduction: quantum states and transitions between them. I will discuss Bohr's paper with 

particular attention to his attempt at interpreting the empirical formulas for atomic spectra which 

were known in his time. 

 Bohr (1913) put forward the innovative notion that atoms  could exist in special "stationary 

states" of given energy in which they did not radiate, even though the laws of classical 

electrodynamics would have required them to do so.2 Radiation  only occurred in conjunction with 

a transition of the atom from one energy level (W1) to another (W2). As suggested by the discrete 

structure of atomic spectra, only a discrete set of energy values were possible. Bohr combined 

classical mechanics with a quantization condition involving Planck's quantum of action h, and 

proposed an expression for the energy levels of the hydrogen atom which depended on an integer 

"quantum number" τ: 

                                                 
2 Beside primary sources, as a basis for my  overview on the development of the old quantum theory, I have used 

Heilbron, 1964, Hund, 1984, pp. 68-72, Jammer, 1966, pp. 63-156, Mehra et al., 1982, pp. 155-257. 
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 Wτ = (2π2me4)/(h2τ2) (Bohr, 1913a, p.8),3 

where m and e were the mass and charge of the electron. To determine the  radiation frequency ν 

associated to a transition from energy Wτ
1
 to energy Wτ

2
 , Bohr  introduced a further hypothesis, 

which was later  referred to as "Bohr's frequency condition":  

Wτ
2
 - Wτ

1
  = hν (Bohr, 1913a, p. 8). 

Using this condition together with his expression of the energy levels of the hydrogen atom, Bohr 

could recover the empirical formula describing the spectrum of that element:  

ν = (2π2me4)/h3 (1/(τ2)2 - 1/(τ1)2) (Bohr, 1913a, pp. 8-9). 

Bohr's model also accounted for the general structure of atomic spectra as expressed by Ritz's 

"combination principle" (Hund, 1927, pp. 1-5, Hund, 1984, pp. 62-64). According to this  principle, 

which had been developed by Walther Ritz on the basis of formulas by Johannes Robert Rydberg, 

the radiation frequencies characteristic of each element could be expressed as the difference 

between two "terms", each of which depended on an integer τi:   

ν = Fr(τ1) - Fs(τ2) (Bohr, 1913a, p.11). 

In a first approximation, all functions F had the same form, but differed in the values of some 

constants appearing in them. By keeping the index τ1 of the first function  fixed and letting τ2 run 

through its possible values, one could obtain with good approximation the frequencies 

corresponding to various observed spectroscopic series. The main series were usually referred to as 

“sharp”, “principal”, “diffuse” and “fundamental” ones, and the corresponding functions were 

therefore traditionally labeled with the letters s, p, d, f  (Fs(τ), Fp(τ), ...) . These labels would later 

on come to represent different values of atomic angular momentum, but, at this stage, there was no 

suggestion of such a connection. Bohr's new result consisted in the fact that his model could explain 

the combination principle by interpreting each function F as representing the energy of a stationary 

state characterized by a quantum number τ.  Within the limits of contemporary spectroscopy, all 

values of τ seemed to generate a spectral term, so no question of "missing lines" arose. This would 

only happen when additional quantum numbers were introduced.  

 

3. Sommerfeld's quantum inequalities (1915-1916) 

 

The most successful extension of Bohr's atomic theory was due to Arnold Sommerfeld. Sommerfeld 

presented his results in 1915 at the Bayerische Akademie der Wissenschaften, but I will refer to 

                                                 
3  Unless otherwise stated, formulas are quoted in the exact form in which they appear in the original sources. 
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them in the more elaborate form in which they were published in 1916 (Sommerfeld, 1916a). In 

Sommerfeld's theory, the stationary states of the hydrogen atom were defined not by one, but by 

three quantum conditions, each giving rise to a quantum number. In absence of external fields, only 

two of these quantum numbers were relevant for determining the energy value: the "azimuthal 

quantum number" n, corresponding to the angular motion of the electron along its (circular or 

elliptical) orbit, and the "radial quantum number" n', corresponding to variations of the distance 

between the electron and the nucleus (Sommerfeld, 1916a, pp. 5-20, 28-33).  

 The azimuthal quantum number is of particular interest for our discussion, because it will 

come to be regarded as the quantum equivalent of classical angular momentum.  By assuming the 

validity of Bohr's frequency condition, Sommerfeld showed that the two quantum numbers n and n' 

could be used to explain both the fine structure of hydrogen lines and the complex structure of the 

spectra as described by the Rydberg-Ritz formula  (Sommerfeld, 1916a, pp. 68-80). However, if all 

possible combinations of the two new quantum numbers were taken into account, one would have 

obtained many more spectral lines than were actually observed. Without explicitly mentioning this 

problem,  Sommerfeld proposed additional quantum conditions for n and n' which could help solve 

it: he postulated that a quantum transition (m, m') → (n, n') could only occur if  both quantum 

numbers did not increase, and expressed this condition in two "quantum inequalities" 

("Quantenungleichungen"): 

 m ≥ n and m' ≥ n' (Sommerfeld, 1916a, pp. 23-24). 

 Sommerfeld's inequalities cannot be regarded as empirical selection rules, since they had 

rather a theoretical justification than an experimental one. In fact, Sommerfeld immediately 

anticipated that comparison with spectroscopic data would show that the second inequality was 

valid without exception ("ausnahmslos"), while the first one was only "roughly correct" ("im groben 

richtig") (Sommerfeld, 1916a, p. 24). Thus, the quantum inequalities were assumed relevant despite 

their lack of general empirical validity: they were  part of a complex theory, albeit a still sketchy 

one, and not just rules describing the structure of spectral lines. After the comparison with 

experiment, Sommerfeld concluded: 

 

The origin of Rydberg's complete line system remains obscure for us, as well as the 

spectra of all non-hydrogen-like elements; however, it is in all probability based on 

some kind of quantum inequality.4 

 

                                                 
4
 "Der Ursprung der Rydbergschen vollständigen Liniensysteme ist uns zwar, wie die Spektren der 

wasserstoffunähnlichen Elemente überhaupt, dunkel; er beruht aber höchswahrscheinlich auf einer Art 
Quantenungleichung" (Sommerfeld, 1916a,  p. 80). 



 6
Here, the quantum inequalities seemed to have the same status as the quantization conditions. One 

reason why, in 1916, Sommerfeld saw no need for interpreting all spectra in terms of energy levels 

and selection rules, was that, as noted by Heilbron (1967, p. 469), he still had doubts about the 

general validity of Bohr's frequency condition. 

 

I believe that this use of quantum theory, Bohr's frequency condition, despite its 

extraordinary effectiveness with respect to the combination principle of spectral lines, is 

indeed still preliminary.5 

 

According to Sommerfeld, the frequency condition failed in the case of the Stark effect (radiation in 

electric fields) and especially for X-ray spectra, making the combination principle inapplicable 

(Heilbron, 1967, pp. 468-470, Sommerfeld, 1916a, p. 14, p. 33, 1916b, p. 161).  Similar doubts 

were expressed at this time also by Peter Debye  (Debye, 1916). Debye applied the new quantum 

theory to the Zeeman effect (radiation in magnetic field) using three quantum numbers, and 

managed to explain the normal Zeeman effect by imposing ad hoc conditions on a quantum 

number. However, he did not think of "selection rules", but instead  concluded: 

 

It seems that, here, real progress can only be obtained by finding a detailed substitute 

for Bohr's second principle hν  = energy difference. This is anyway already the main 

unsolved problem in this field.6 

 

Sommerfeld's quantum inequalities were not selection rules, but represented a first step in the 

emergence of that notion. Paul Sophus Epstein applied Sommerfeld's approach to the theory of the 

Stark effect (Epstein, 1916). He, too,  introduced three quantum numbers - albeit different from 

Sommerfeld's - and imposed  for a transition mi →  ni the quantum inequalities:  

n1 ≤ m1,  n2≤  m2,   n3 ≤ m3 ,  

which he described as  providing a "selection principle" ("Auswahlprinzip") (Epstein, 1916, p. 148, 

p. 150). This is the earliest occurrence of the term "selection" ("Auswahl") that I have run across  in 

spectroscopic context and, as we shall see, the expression "selection rules" can indeed be traced 

back to it.  However, the word " principle" underscores the theoretical character of the notion.  

                                                 
5
 "Ich glaube, daß diese Verwendung der Quantentheorie, die Bohrsche Frequenzbedingung, trotz ihrer 

außerordentlichen Leistungsfähigkeit in Hinsicht auf das Kombinationsprinzip der Spektrallinien, doch nur 
provisorisch ist" (Sommerfeld, 1916a, p. 14).  

6 "Es scheint, daß ein wesentlicher Fortschritt hier nur zu erreichen ist, indem man für den zweiten Bohrschen Ansatz 
hν = Energiedifferenz eine detaillierten Ersatz substituiert, was ja sowieso auf diesem Gebiete als vorderhand 
ungelöste Aufgabe an der Spitze steht" (Debye, 1916, p. 511). 
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 Later in 1916, Sommerfeld successfully associated a value of the azimuthal quantum 

number to each of the functions Fi appearing in the Rydberg-Ritz combination formula 

 ν = Fr(τ1) - Fs(τ2) . 

In this way, the labels traditionally indicating the various spectral series (s, p, d, f) came to be 

associated with the values of the azimuthal quantum number and, later on, with those of (orbital) 

angular momentum (Sommerfeld, 1916c, pp. 152-166). Sommerfeld's main focus in this work was 

the theoretical derivation of the structure of the spectral terms (i.e. the functions F) and, as far as 

possible, of the numerical values of the various constants appearing in them. Spectroscopic 

evidence also showed that not all functions combined with all others, and one might have expressed 

this fact by saying that the azimuthal quantum numbers assigned by Sommerfeld could only change 

by one unit. Yet, in this paper, Sommerfeld did not even mention “missing lines”, let alone 

formalize them  in terms of  selection rules.  

 In conclusion, we can say that, in 1916, Bohr's interpretation of spectral lines was accepted 

for those cases in which it fitted experimental evidence, but was not generally regarded as a valid 

scheme for interpreting all observed spectra. In an analogous way, there was no cogent reason to 

believe that, given any two stationary states, a spectral line corresponding to the transition between 

them was to be expected, and should be declared "missing" if it failed to appear. Moreover, the 

empirical formulas through which theorists dealt with spectroscopic evidence could not necessarily 

be seen as saying something about lines that were not observed. It was only later on that the non-

combination of spectroscopic terms  attracted the attention of theorists  as a possible testing ground 

for theoretically-based "selection principles". 

 

4. Selection principles, conservation laws and symmetry arguments in the work of Bohr  and 

Rubinowicz (1918) 

 

Between 1916 and 1918,  physicist worked both on expanding the Bohr-Sommerfeld model and on 

improving experiments on spectral frequencies, intensities and polarizations. Despite the efforts of 

the theoreticians, no viable alternative was found to Bohr's frequency condition. In 1917, 

Sommerfeld seemed to have set aside his doubts about its validity, and instead focused on the 

theoretical determination of radiation intensities (Sommerfeld, 1917). In this context, he  explicitly 

addressed the question of the possible theoretical significance of "missing lines" ("ausfallende 

Linien", Sommerfeld, 1917, pp. 95-100, pp. 106-109). However, he did not describe the missing 

lines in terms of selection rules, but rather developed further his theory of quantum inequalities, and 

followed Epstein in calling them a "selection principle" (Sommerfeld, 1917, p. 109).  



 8
 In 1918, two authors proposed, independently from each other, two theoretical mechanisms 

capable of accounting for (some) missing lines:  Niels Bohr and  Wojciech (Adalbert) Rubinowicz, 

a Polish physicist who had been working in Munich as an assistant to Sommerfeld in the years 

1917-1918 (Bohr, 1918a, 1918b , Rubinowicz, 1918a, 1918b).  I will expound Rubinowicz's work 

first, as it is particularly relevant for our story. 

 The starting point of Rubinowicz' papers on "Bohr's frequency conditions and the 

conservation of angular momentum" ("Bohrsche Frequenzbedingungen und Erhaltung des 

Impulsmoments"), part I and  II, were the two key assumptions of the Bohr-Sommerfeld model:  the 

existence of a discrete set of stationary states and Bohr's frequency conditions (Rubinowicz, 1918a, 

p. 441). From these premises, Rubinowicz derived a theoretical "selection principle" 

("Auswahlprinzip") which he characterized as a "more exact version" ("exaktere Fassung") of 

Sommerfeld's quantum inequalities (Rubinowicz, 1918a, p. 441, 1918b, p. 466, p. 473). The new 

ingredient that allowed him to obtain this result was the assumption that the law of conservation of 

angular momentum would be valid for the system "Atom + the electromagnetic field emitted by an 

electron transition" (“Atom + das beim Elektronenübergange ausgestrahlte elektromagnetische 

Feld” Rubinowicz, 1918a, p. 441). This conservation law was valid in classical electrodynamics and 

Rubinowicz hoped that it would lead to positive results also in the quantum case. In his reflections, 

he took  it as a "fact" ("Tatsache")  that Sommerfeld's azimuthal quantum number n, when 

multiplied by the constant h/2π,  represented the physical quantity "angular momentum" of an atom 

(Rubinowicz, 1918a, p. 441). This was a premise which not everyone at that time would have been 

ready to share, even though it was quite common to speak of the quantization of angular momentum 

in units h/2π, an  analogy which Bohr himself had suggested as an interpretation "by help of 

symbols taken from ordinary mechanics" (Bohr, 1913a, p. 15,). Rubinowicz did not state explicitly 

why angular momentum would be conserved and, since he had no mathematical model for the 

atom-radiation interaction, his assumption  was necessarily  based only on a qualitative physical 

reasoning. This, in turn, could only find an implicit justification in the spherical symmetry of the 

system which, in the classical case, would have led to angular momentum conservation.7  However, 

Rubinowicz did not address this question, but simply assumed angular momentum conservation. 

 Using classical electromagnetism, Rubinowicz computed the angular momentum of a 

spherical wave and showed that, when renormalized by h/2π,  it had an absolute value equal or less 

than one. (Rubinowicz, 1918a, pp. 443-444). This led to a selection principle for the azimuthal 

quantum number: ∆n = 0, ±1 (Rubinowicz, 1918a, pp. 444-445). In testing his result against 

                                                 
7 The relationship between   symmetries and conservation laws was proven in its most general form by Emmy 

Noether only in 1918, but was already known since the previous century for specific cases like angular momentum 
(Kastrup, 1987). 
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experimental evidence, Rubinowicz did not cite Sommerfeld's (1916c) paper connecting the 

spectroscopic terms of the Rydberg-Ritz formula to different values of the azimuthal quantum 

number, but rather followed the reasoning of Sommerfeld (1917), concluding that his own selection 

principle fared at least as well as Sommerfeld's quantum inequalities, and that it could also explain 

some features of Zeeman and Stark spectra (Rubinowicz, 1918b, pp. 472-473). Like quantization 

conditions and quantum inequalities,  Rubinowicz's selection principle was primarily a theoretical 

notion. 

 Let us now go on to Bohr's paper, in which he once again employed his idea of a 

correspondence between classical and quantum theory. He wrote:  

In a stationary state of a periodic system, the displacement of the particles in any given 

direction may always be expressed as a Fourier series of harmonic vibrations:  

 ξ = Σ Cτ cos 2π ( τωt+cτ) (Bohr, 1918a, p. 15) 

Here, ξ was the displacement, t the time, ω the frequency of the classical oscillator (not the radiation 

frequency ν) and τ an integer number. In classical electrodynamics,  this situation would have led to 

the emission of radiation in all the harmonics τω,  with the intensity of each depending on its 

coefficient Cτ (Bohr, 1918a, p. 15).  For example, a harmonic oscillator only presented, and 

therefore radiated, the term with τ=1. In a quantum system, so Bohr's theory, the intensity of the 

radiation emitted in a transition with a change of quantum number  ∆n = τ  was proportional to the 

coefficient Cτ of the τ-th Fourier component of the expansion. Since the angular motion of an 

electron along its orbit was equivalent to that of a harmonic oscillator, the classical expansion of the 

displacement with respect to the relevant angular coordinate only had the m=1 term, and the 

azimuthal quantum number could therefore only change by ∆n =  ±1  (Bohr, 1918a, p. 16, pp. 67-

68).8  

 Bohr compared this result with the fine structure of hydrogen-like spectra, but did not 

mention Sommerfeld's interpretation of the Rydberg-Ritz combination formula in terms of the 

azimuthal quantum number (Bohr, 1918b, p. 67). It was only in the third part of his study, published 

in 1922, that he discussed Sommerfeld's classification, and noted the fact that, thanks to it, his own 

result was shown to be in perfect agreement with experiment (Bohr, 1922, pp. 103-104). This seems 

to suggest that, in deriving his theory, Bohr had no specific experimental evidence in mind which 

should be explained. 

 It was left to Sommerfeld, in the first edition of Atombau und Spektrallinien (1919), to 

                                                 
8 The two motions were shown to be equivalent by using the adiabatic hypothesis, or "mechanical transformability", 

as Bohr preferred to call it"(Bohr, 1918a, p. 8). 
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connect Bohr and Rubinowicz's results to his own interpretation of spectral terms as linked to 

azimuthal quantum numbers. Sommerfeld  showed a very clear preference for the theory of his 

former assistant Rubinowicz, which he discussed at length  (Sommerfeld, 1919, pp. 390-411). 

Rubinowicz's "selection principle" was for Sommerfeld  a means to bridge the gap between 

classical and quantum physics:  Bohr's frequency condition expressed the conservation of energy in 

a radiation process and thus,  "with the same right, we shall now require the conservation of 

momentum and angular momentum" ("mit demselben Recht werden wir jetzt die Erhaltung des 

Impulses und des Impulsmomentes fordern", Sommerfeld, 1919, p. 381). Sommerfeld  expounded 

Rubinowicz's theory and, at the end of his discussion,  briefly mentioned Bohr's result 

(Sommerfeld, 1919, pp. 401-403). He admitted that Bohr's  condition  ∆n =  ±1  fitted much better  

the Rydberg-Ritz formula than Rubinowicz's, but  made clear the epistemological  gap he perceived 

between a theoretically significant selection principle like Rubinowicz's, on the one side, and Bohr's 

empirically successful condition, on the other. The latter, he described as a "magic wand" 

("Zauberstab") to make quantum theory useful in practice (Sommerfeld, 1919, pp. 406-411, quote 

from p. 402).  

 

5. From selection principles to selection rules (1918-1924) 

 

As shown in the previous pages, the aim of theoretical physicists like Bohr, Rubinowicz and 

Sommerfeld in formulating their selection principles had not been primarily to explain spectral 

structures, but rather to refine their own theories in such a way, as to better understand the inner 

structure of the atom. It was as a continuation of this program with other means, that those same 

theoretical physicists eventually came to endorse what Forman (1970) called an a posteriori 

approach:  trying to formulate the empirical evidence of the spectra in the theoretical terms of 

"quantum numbers" and "selection principles", and then using the resulting pattern as a starting 

point for new theoretical analyses (Forman, 1970, p. 186). In doing so, they combined their own 

theoretical agendas with an approach that spectroscopists had been successfully applying since the 

previous century: attempting to combine the frequencies of different spectral lines of the same 

system with the aim of uncovering regular patterns. 

 Combining spectral lines to obtain other spectral lines may sound very similar to combining 

spectral lines into energy levels, but in the early 1920's it was not so. In his study of Landé's path to 

the interpretation of the anomalous Zeeman effect, Forman (1970) has given a masterful analysis of 

how difficult it was for the historical actors, Landé in particular, to approach the interpretation of 

spectra  in what we today regard as the most obvious way: decomposing each spectral line into the 
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difference of energies specified by certain quantum numbers.  According to Forman, it was 

Sommerfeld who took the decisive step of abandoning a priori attempts at predicting spectra 

primarily on the basis of theoretical considerations, and opting instead for the a posteriori approach 

of letting empirical evidence guide both the assignment of quantum numbers and the determination 

of the corresponding selection principles (Forman, 1970, pp. 186-187). In his study of the Zeeman 

effect,  Sommerfeld wrote: 

 

A general remark which does not say anything new to spectroscopists must be kept in 

mind in the following pages: the aim of spectroscopy is not so much the knowledge of 

lines (energy differences), but rather the knowledge of terms (the energy level 

themselves), in which the frequencies of the lines can be decomposed according to the 

combination principle.9 

 

Thus, the "combination principle" which Ritz had formulated for spectral lines had now come to 

refer to energy levels.  Sommerfeld also claimed that the notion that the combination principle 

could apply to  Zeeman spectra had only been explicitly formulated a few months earlier (Forman, 

1970, p. 186, Sommerfeld, 1920, pp. 240-241). Moreover, he assumed that the combinations were 

subject to "some sort of selection principle" ("eine Art Auswahlprinzip") like Rubinowicz's, which  

acted on a new, "hidden" ("verborgen") quantum number (Sommerfeld, 1920, pp. 230-231). 

However, Sommerfeld did not try to extract from experimental evidence the features of this new 

selection principle, and instead  simply extended Rubinowicz's principle to the  hidden quantum 

number (Forman, 1970, pp. 190-194, Sommerfeld, 1920, p. 231). Thus, despite the good premises, 

no new, empirically-based selection rules made their appearance in this paper.  

 With time, the exchange between atomic theory and spectroscopy became increasingly 

close. In a lecture held in Berlin in 1920, Bohr represented the theoretical energy levels of sodium 

in a diagram, and connected with lines those levels between which transitions could occur (Bohr, 

1920). He then used his theory to explain why some transitions were forbidden. Later in the same 

year, Walter Grotrian used Bohr's diagrammatic method to represent new spectroscopic data on the 

element neon: using the Rydberg-Ritz formula, he interpreted each line as the difference of two 

energy levels, plotted the levels as Bohr had done, and noted the regularities in the way in which 

they  did or did not combine with each other into spectral lines (Grotrian, 1920).   

                                                 
9
 "Eine allgemeine Bemerkung, welche dem spektroskopischen Fachmanne nichts Neues sagt, ist für alles folgende 

im Auge zu behalten: Das Ziel der Spektroskopie ist nicht so sehr die Kenntniss der Linien (Energiedifferenzen), 
sondern die Kenntnis der Terme (der Energiestufen selbst), in die sich die Schwingungszahlen der Linien nach dem 
Kombinationsprinzip zerlegen lassen" (Sommerfeld, 1920, p. 222). 
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 This approach would eventually lead to Landé's interpretation of the anomalous Zeeman 

spectra. However, Forman (1970) has shown how difficult it was for Landé, when trying to 

implement Sommerfeld's a posteriori approach, to refrain from combining spectral lines into 

spectral lines, and to focus only on (hypothetical) energy levels (Forman, 1970, pp. 195-207, pp. 

221-231). The result of his efforts was an energy scheme involving three quantum numbers, which 

he referred to as azimuthal quantum number n (later: l), inner quantum number k (later: j) and 

magnetic quantum number m (Landé, 1921, p. 241). For each quantum number, he derived 

"selection rules" ("Auswahlregeln", Landé, 1921, pp. 323-324)  which, depending on the 

circumstances, corresponded to the "selection principle" of Rubinowicz or Bohr (Landé, 1921, pp. 

231-232). Thus, in his 1921 paper, Landé used not only the term "selection rules", but also a notion 

which largely corresponded to the one whose emergence we are investigating, even though Landé 

still underscored the connection of his selection "rules" to the theoretical selection "principles" of 

Rubinowicz and Bohr.  

 From the dialogue between theory and experiment, a  powerful heuristic tool  had emerged 

and, from then onward, it would be extensively used to make sense of old and new spectroscopic 

material in optical  and X-ray range, both in absence and in presence of external fields (Hund, 1927, 

p. 17, pp. 26-27, p. 60, Hund, 1984, pp. 97-101, pp. 114-124)).  In this process, selection principles 

eventually came to be regarded as one of the many empirical "rules" and formulas which 

spectroscopists had been developing since the late nineteenth century.  

 

6. Selection rules in the new quantum mechanics (1925-1926) 

 

In 1925, the new quantum mechanics began to emerge and, by 1926, some - but not all - selection 

rules had found a justification in the new formalism. In the present paper, it is not possible for me to 

discuss these developments in detail and I will limit myself to stating those results which are 

relevant for our story.  

 In the matrix mechanics of  Werner Heisenberg, Max Born and Pascual Jordan, observable 

quantities like position q and momentum p were associated with infinite-dimensional matrices 

whose rows and columns were labeled by the quantum numbers of the stationary states of the 

system (Born et al., 1925, Born et al., 1926, Heisenberg, 1925).  If q was a cartesian coordinate of 

the electron in an atom, then the square modulus of the matrix elements q(n, n') was regarded as 

representing the probability of the radiative transition n → n' (Born et al., 1925, pp. 866-867, Born 

et al., 1926, pp. 578-579, Heisenberg, 1925, p. 886). The three authors derived the operator 

associated with angular momentum, showing that it was quantized to integer or half-integer 
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multiples j of h/2π  and that, in radiation processes, it obeyed the "selection principle" 

("Auswahlprinzip") ∆j = 0, ±1 (Born et al., 1926, pp. 595-605, quote from p. 600 and p. 602). With 

the advent of Erwin Schrödinger's quantum mechanics in 1926, the stationary states of atoms and 

molecules came to be associated with a wave function ψ(x) solving Schrödinger's equation 

(Jammer, 1966, pp. 255-280). Using perturbation theory, Schrödinger showed how the formula for 

radiation intensities of matrix mechanics could be understood in wave mechanics as based on the 

electric dipole of the atom (Schrödinger, 1926, pp. 755-756).  

 Selection rules had found a place in the new quantum mechanics, but did not seem to be 

receiving much attention from theoretical physicists. In 1925, Heisenberg, Born and Jordan had 

showed that matrix mechanics provided a quantum equivalent of the classical conservation of 

angular momentum, but they had not attempted to connect the relevant selection rules to physical 

conservation arguments (Born et al., 1926, p. 596). Neither had there been any attempt to derive 

selection rules from symmetry arguments before the publication of Wigner's group-theoretical 

work. In early 1926, symmetry considerations entered the new quantum mechanics only as far as a 

very special kind of symmetry was concerned: the invariance of quantum systems with respect to 

the permutation of identical particles. Since it was by this path that Wigner eventually came to his 

result, I will briefly state the problem, before shifting the focus to Wigner's work. 

 In the early 1920's, the interpretation of the spectra of the various elements in terms of 

quantum numbers and selection rules had allowed the development of increasingly elaborate 

theories of inner atomic structure (Hund, 1984, pp. 104-113). On this basis, Wolfgang Pauli  

formulated his exclusion principle, according to which no two electrons within the same atom could 

be in the same state. One year later, Werner Heisenberg and Paul Dirac contemporarily but 

independently showed that Pauli's exclusion principle was a consequence of the invariance of 

atomic  states  with respect to permutations of their electrons (Dirac, 1926 pp. 666-670, Heisenberg, 

1926).  

 The new symmetry was formally expressed by requiring that the wave function of a many-

electron system should be  either symmetric or antisymmetric under permutation of the labels of the 

electrons.  Heisenberg and Dirac argued that no transitions between symmetric and antisymmetric 

wave function could ever occur, and that in nature only antisymmetric functions were realized, 

giving rise to Pauli's exclusion principle. Heisenberg also showed how permutation symmetry 

explained the structure of the helium spectrum and, in a later paper,  attempted to provide a rigorous 

proof of the non-combination principle for states of different symmetry in the case of a generic 

number of electrons (Heisenberg, 1927). According to Scholz, though, his argumentation was 

flawed (Scholz, 2006, pp. 443-447). Interesting for us is the fact that, although he had  worked at 
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developing selection rules for various kinds of "angular momentum" quantum numbers, 

Heisenberg did not come to the idea that, beside permutation symmetry, rotation symmetry, too, 

might be of help in explaining spectral structures. This connection was established by Wigner, to 

whose early career we now turn. 

 

7.  Wigner's experience with the group theory of crystallographers (1923-1925) 

 

Eugene Paul (Jenı Pál) Wigner  was born in 1902 in Budapest from a Hungarian Jewish family. 

Like his childhood friend John von Neumann, he was sent to study in Berlin and, between 1921 and 

1925, he earned a diploma and a PhD in chemical engineering at the Technical University.10  During 

his study, he worked under the supervision of Michael Polanyi in the laboratories of the newly-

founded Kaiser Wilhelm Institute for Fiber Materials, where he also collaborated with Hermann 

Mark. In 1925, after receiving his PhD, Wigner followed the wishes of his family and went  back to 

Hungary to work as a chemical engineer in a leather factory. In 1926, though, he received an offer 

to come back to Berlin as an assistant to Karl Weissenberg, a mathematician and crystallographer 

who had been collaborating with Mark and Polanyi at the Fiber Material Institute since the early 

1920's (Polanyi, 1962, Wigner, 1992, pp. 101-103).11 

 Wigner gladly accepted the opportunity offered to him, and in 1926 he was back in Berlin, 

working as an assistant to  Weissenberg. At the time, Weissenberg had already made a decisive 

contribution to X-ray crystallography in the form of a new method of structure determination, and 

had also published a series of theoretical articles developing a theory of crystalline solids in which 

symmetries and group theory played a central role (Buerger, 1990, p. 112, Weissenberg, 1925a-e). 

 At this point, it is important to raise a question: what was "group theory" in Wigner's time? 

As has been masterfully shown by Scholz (1989), in the first decades of the twentieth century, the 

group theory of the crystallographers was different from that of the mathematicians. It was not a 

case of the one being less advanced than the other: they were two  different mathematical tools to be 

employed for different aims. The theory of symmetry groups had been one of the main tools for 

theoretical crystallographers since the nineteenth century (Scholz, 1989, pp. 110-153). Shortly 

before 1900, Evgraph Stephanovič Fedorov and  Arthur Schoenflies had independently derived a 

complete classification of all possible symmetries of a crystal lattice - i.e. of a three-dimensional, 

discrete, space-filling, periodical structure - the so-called 230 "space groups" (Scholz, 1989, pp. 

                                                 
10 The most detailed discussion of this stage of  Wigner's career is: (Chayut, 2001). On Wigner's life see (Hargittai, 

2006, Wigner, 1992). I wish to thank Prof. Bretislav Friedrich for many fruitful discussions on Wigner’s early work. 
11
  On Weissenberg's life and research, see the summary and references in Chayut (2001). I am deeply indebted to 

Prof. H. Gutfreund for leading me to appreciate the  significance of Weissenberg's theoretical work. 
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114-148). At the beginning of the twentieth century, though, the group theory of 

crystallographers and that of  mathematicians started drifting apart, as mathematicians focused on 

more abstract aspects, such as how to extend the crystallographic classification to lattices of n 

dimensions (Scholz, 1989, pp. 150-153, Wussing, 1969, pp. 182-183). Crystallographers were 

instead primarily interested in physically relevant symmetries of three-dimensional, discrete, 

periodical structures. In 1912, experiments by von Laue had shown  that X-rays passing through 

crystals produced regular, geometrical diffraction patterns and, since then, physicists had developed 

increasingly refined methods to extract from those patterns information about the inner structure of 

crystal solids (Ewald, 1962). This subject is of particular interest to us, because Wigner's earliest 

research was in X-ray crystallography, one of the main field of activities of Polanyi, Mark and 

Weissenberg at the Kaiser Wilhelm Institute for Fiber Materials. 

  Chayut (2001) has already noted that the origin of Wigner's innovative style in joining 

quantum mechanics and group theory may be sought in his work  in a "peripheral" area of science, 

namely chemistry and crystallography. While acknowledging the role played by crystallography, 

and especially by Weissenberg, in shaping Wigner's research interests, Chayut saw only a generic 

framework alerting Wigner to the power of symmetry and of group theory, and remarked: 

"Wigner's work is very different from Weissenberg's sketchy theory" (Chayut, 2001, p. 68). In the 

following pages, I will argue that, contrary to Chayut's claim, there are a number of specific features 

which connect the use of group theory in crystallography to its employment to explain 

spectroscopic data. Moreover, I will try to show that Weissenberg's theory of crystalline matter, 

while relying on the group theory of the crystallographers and not on the latest innovations of the 

mathematicians, yet focused on the kind of symmetry arguments which would be relevant for 

Wigner's work. In my discussion, I do not aim at proving any "influences",  but only wish to 

contribute to making plausible why it was Wigner, and not for example Hermann Weyl, who first 

asked whether group theory might help explain  spectroscopic selection rules. I will first shortly 

discuss the role of group theory in X-ray crystallography and then, in the next section, I will focus 

on Weissenberg's theory of crystalline matter. 

 To earn his diploma in chemical engineering, Wigner had studied the structure of rhombic 

sulfur with X-ray diffraction under the supervision of Hermann Mark (Mark/Wigner, 1924, Wigner, 

1992, pp. 80-81). When extracting information about  the inner structure of a crystal from its X-ray 

diffraction patterns, a key step is determining to which of the 230 space groups the crystal belongs 

(Ewald (1962), pp. 102-116). As P.P. Ewald explained, "This [...] does not require a quantitative 

discussion of intensities [in the diffraction pattern], but only the observation of certain zero 

intensities occurring systematically, the 'absences'." (Ewald, 1962, p.107) Thus, inner symmetry 
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became visible in form of an "absence" ("Auslöschung")  of radiation, and this  method was 

employed also by Wigner and Mark in their work on rhombic sulphur (Mark/Wigner, 1924, 410-

411).  More in general, X-ray crystallography was based on the notion that the group-theoretical 

properties of crystal lattices determined the intensity patterns of diffracted X-ray radiation. By 

1928, the laws governing the structure of these patterns were referred to as "selection rules" 

("Auswahlregeln"), although this was a different notion from the one which we had earlier emerged 

in spectroscopy. (Brandenberger et al., 1928, especially p. 303). A further contact point between the 

use of group theory in crystallography and its later employment in quantum spectroscopy was the 

focus on linear transformation of discrete sets of objects. Finally, mirror inversions, which are 

hardly relevant in classical mechanics, play a very important role both in crystallography and in 

quantum theory. As we shall see presently, the first one to note their relevance for quantum system 

was Wigner. 

 

 

 

8. Group theory in Karl Weissenberg's research program  

 

The story of how Wigner learned about group theory by trying to solve problems posed to him by 

Weissenberg has often been told: Weissenberg assigned Wigner problems in group theory, to solve 

which Wigner, with the help of von Neumann, learned and applied the newest result of the 

mathematicians (Chayut, 2001, pp. 57-58, pp. 68-72, Scholz, 2006, p. 447,  Wigner, 1992, pp. 104-

106). According to Wigner, Weissenberg did not really understand these abstract solutions, but this 

is not what interests us here. I will instead try to fill in some background to this story as far as 

Weissenberg's theory of matter structure is concerned, because I wish to make some light on the 

kind of problems which Weissenberg asked Wigner to solve.   

 Chayut's (2001) judgment that Weissenberg's theory was "sketchy" is based  on the general 

introductory remarks made by Weissenberg in the very first paper he published on the subject 

(Chayut, 2001, p. 67; Weissenberg, 1925a, pp. 406-414). In those pages, the author expounded his 

idea that the formal transformation properties of physical objects with respect to a change of  

system of reference provided information on the physical behavior of the system. As noted by 

Chayut, this approach is similar to Wigner's later research program, but too vague to be regarded as 

a significant element in shaping his physical-mathematical techniques. The gist of Weissenberg's 

theory, though, is a proposal for a classification of  crystalline structures which Weissenberg 

regarded as physically highly significant addition (“Zusatz”) to the 230 space groups (Weissenberg, 
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1925a-e, quote from Weissenberg, 1925d, p. 14).  A witness to the non-triviality of 

Weissenberg's work was the expert in crystallographic group theory Schoenflies who, in 1926, 

wrote a report "On the most recent crystallographic works of K. Weissenberg", with the aim of 

improving the reception of what he considered a promising theory by expounding it in a more 

accessible terms (Schoenflies, 1926). The key notion in Weissenberg's classification of crystal 

structures was that of an "island" ("Insel"), later called a "particle group" ("Partikelgruppe") 

(Weissenberg, 1925c, p. 433, Weissenberg, 1925e, p. 57). Weissenberg's island was a set of 

particles in a crystal structure which possessed the following property: when the crystal was 

subjected to a transformation which left it invariant as a whole (i.e. a transformation belonging to 

some subgroup of the crystal's space group), then, either the particles of the island transformed into 

each other, or the whole island was transformed into another, equivalent, island. 

 Purely on the basis of symmetry considerations, Weissenberg was able to show that islands 

displayed a very important physical property: each particle in an island was always more strongly 

bound to the other particles in the same island than to any other particle in the crystal (Schoenflies, 

1926, pp. 217-219, Weissenberg, 1925c, pp. 445-446, Weissenberg, 1925e, pp. 95-96). 

Weissenberg believed that a classification of crystal structures according to different kinds of 

islands would be more effective for physical and chemical research than the 230 space groups, and 

claimed to have given such a complete systematic (Weissenberg, 1926e, p. 102).  According to 

Schoenflies' summary, the task Weissenberg had set himself amounted to providing an overview of 

all subgroups of each of the 230 space groups (Schoenflies, 1926, p. 206). At that time, the theory 

of subgroups of space groups was not well developed, and its beginning is usually associated with a 

paper published in 1929 by Carl Hermann (Aroyo et al., 2006, p. 3, Hermann, 1929, Senechal, 

1990, p. 51). In that paper, Hermann referred to Weissenberg's work as the most recent and 

complete classification of a part of the subgroups of space groups (Hermann, 1929, p. 534). Thus, in 

1926, to bring forward his research program, Weissenberg  had to cope with a kind of group-

theoretical problems which, until then, had not been of much interest to crystallographer: how to 

classify regular point systems by decomposing them into subsystems transforming into each other 

under a symmetry leaving invariant the system as a whole. It was in all probability this kind of 

problems which Weissenberg expected Wigner to solve for him, and it was in this way that Wigner, 

thanks to von Neumann's advice, discovered the tools which  mathematicians had  developed to 

deal with such questions: the theory of group representations. Wigner never published any results of 

the group-theoretical computations undertaken when working for Weissenberg, but his recollections 

on the subject are quite vivid and, even though they have often been cited, it is worth quoting them 

here once more: 
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My boss, Dr. Weissenberg, also did fine work. He wanted to learn why atoms hold 

positions in the crystal lattice corresponding to symmetry axes and planes. He told me 

to read up on group theory, try to resolve this questions, and then report to him. "Here is 

Weber's Algebra," he would say. "Read it and then prove to me that stable positions in 

crystals are symmetry points."12  

I spent about three weeks reading Weber's book and I found a crude solution. Though 

Weissenberg was a fine crystallographer, he hardly followed my answer. He told me it 

was not general enough and sent me back to refine it.  

This grew into a routine. Weissenberg gave me what seemed to be simple problems to 

solve. They were simple to solve in an elementary way. But then Weissenberg would 

look into my answers and ask for more elegant ones. Though I often doubted I could do 

better, the search for a suitable elegance led me increasingly deeper into group theory. 

[...] In group theory, Weissenberg gave me one highly exasperating problem. I worked 

diligently at it and got exactly nowhere. So I turned for help to my childhood friend 

from Budapest, Jancsi von Neumann. [...] Jancsi considered my group theory problem 

for about half an hour's time. Then he said, "Jenö, this involves representation theory". 

Jancsi gave me a reprint of a decisive 1905 [sic] article by Frobenius and Schur. [...] 

This reprint was my primary introduction to representation theory, and I was charmed 

by its beauty and clarity. I saved the article for many years out of a certain piety that 

these things create. (Wigner, 1992, p. 104-107)  

In the writings he published in 1926-1927, Wigner did not cite any joint paper by Georg Ferdinand 

Frobenius and Issai Schur. However, Frobenius and Schur only wrote two papers together, both 

published in the 1906 (!) issue of the Proceedings of the Königlich Preussischen Akademie der 

Wissenschaften.13 Both papers dealt with the theory of group representations, the first one was "On 

the real representations of finite groups", while the second one had the title "On the equivalence of 

groups of linear substitutions" (Frobenius and Schur, 1906a and 1906b) and was cited by Weyl in 

his textbook on "Group theory and quantum mechanics" (Weyl, 1928, p. 126 and p. 277). It remains 

open to discussion which of the two papers Wigner preserved with such piety, although the first one 

had a more introductive character. 

It would lead us too far, if we tried to explore specific hypotheses on how Wigner's problem  

                                                 
12 Heinrich Weber's "Lehrbuch der Algebra" was at the time the standard textbook for algebra and group theory in 

German language (Wussing, 1969, p. 184). Weber introduced group theory in the second volume of his textbook 
(Weber, 2nd ed. 1899), but he did not discuss the theory of group representations, which was developed between the 
last decades of the nineteenth century and the early twentieth century.  

13 The papers of Frobenius and Schur are collected respectively in: Frobenius, 1968; Schur, 1973 (on Schur’s joint 
papers with Frobenius see the remark in Schur, 1973, vol. 1, p. IV). 
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might have looked like and how the Frobenius/Schur paper might have helped him solve it. 

However, I have gone into some detail in discussing Weissenberg's research beyond Wigner's 

scanty reference to "symmetry axes and planes" and "group theory", as I believe that it provides 

important elements to understand the origin of Wigner's group-theoretical arguments. Although it is 

true that Wigner only learnt about representation theory from von Neumann, this is still only half of 

the story:  the other, essential half of the historical and epistemological picture is that  Wigner came 

to know representation theory along a  path that made him aware of a specific kind of questions that 

could be asked and answered with its help. As we shall see in the next section, there were 

remarkable structural similarities between the kind of problems Wigner tackled when working with 

Weissenberg and his later use of group theory in atomic spectroscopy. 

 

9. Wigner's use of group theory in explaining selection rules as a signature of symmetry (1926-

1927) 

 

In section 5 above, we left Heisenberg and Dirac claiming - but not proving - the impossibility of 

transitions between quantum states described by wave functions with different transformation 

properties with respect to permutations of identical particles.  To prove this claim, as Dirac and 

Heisenberg noted, one would have had to classify wave functions according to how they behaved 

under permutation: a trivial task for the case of two particles, but already complex for n=3. Given 

Wigner's background as discussed in the previous sections, it is hardly surprising that he realized 

how the problem of classifying the solutions of Schrödinger's equation according to their 

permutation symmetry properties could be solved by group-theoretical methods, in particular 

representation theory. Wigner immediately set himself to work and, on November 12th, submitted 

to Zeitschrift für Physik the first part of a study on "Non-combining terms in the new quantum 

theory", in which an explicit computation for n=3 was given and  a general  solution was 

announced (Wigner, 1927a). The second part of the study was submitted only two weeks later, and 

it  contained a rigorous - although relatively obscure - group-theoretical proof of Dirac's and 

Heisenberg's claim (Wigner, 1927b). 

 At this point, one might say that it "only" remained for Wigner to generalize his approach 

from permutations to generic linear transformations. Yet, this further step was at the time anything 

but obvious, and the fact that Wigner took it represented an innovative breakthrough setting in 

motion the synergy between selection rules and group theory. A generalization from permutations 

to other linear transformation was at the time not obvious because permutations seemed to stand on 

a different epistemological footing than other symmetries.  Pauli's exclusion principle was regarded 
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as expressing a  significant, if obscure, physical law, and the newly established connection 

between that principle and permutation symmetry was therefore regarded as a decisive, unique step 

towards understanding the non-classical features of quantum systems. As for rotation symmetry and 

symmetry arguments in general, however, there was no reason to consider them as a promising 

starting point for gaining a deeper understanding of quantum mechanics. Moreover, as we have 

seen, selection rules were by this time considered as rather uninteresting from the theoretical point 

of view. 

 Wigner, however, knew that, in crystallography, group-theoretical properties of linear 

transformations allowed to predict the regular diffraction patterns on the basis of the transformation 

properties of  a given crystal lattice.  While working on quantum permutations, he became aware 

that the situation in quantum mechanics was in principle very similar, due to the linearity of 

Schrödinger's equation. The considerations which had been valid for permutations of particle 

positions xi  could be extended to  rotations and mirror inversions, and Wigner did so in his next 

paper: "Some conclusions from Schrödinger's theory for the structure of [spectral] terms" (Wigner, 

1927c). The paper began with the words: 

 

The simple form of Schrödinger's differential equation allows the application of some 

methods of groups, more precisely, of the theory of representations. [...] In this way, it 

is possible to explain a large part of our qualitative spectroscopic experience.14 

 

Wigner stated clearly his aim: explaining spectroscopic evidence, and particularly the selection 

rules for azimuthal and magnetic quantum numbers, without however dealing with the "spinning 

electron" (Wigner, 1927c, pp. 624-625, p. 643, pp. 648-694). He subdivided his paper into a 

"general" and a "special" part and, in the first one, he set the group-theoretical stage for the later 

computations. Given a generic function ψ(x1, x2, ...xn), he assumed its variables xi to undergo a 

generic linear transformation into the new variables xi' = R(xi). The function ψ(x1, x2, ...xn) would 

then transform into ψ(R(x1, x2, ...xn)). If the function ψ(x1, x2, ...xn) was  a solution of 

Schrödinger's eigenvalue equation for energy ε (i.e. H(ψ, ε) = 0), and if also ψ(R(x1, x2, ...xn)) 

turned out to be a solution of the same equation, then one could state that the transformation R was 

contained in the symmetry group of the differential equation H(ψ, ε) = 0 (Wigner, 1927c, p. 626). 

Thus, Wigner associated with each type of Schrödinger equation a symmetry group, just like in 

                                                 
14 "Die einfache Gestalt der Schrödingerschen Differentialgleichung gestattet die Anwendung einiger Methoden der 

Gruppen , genauer gesagt, der Darstellungstheorie. [...] Es ist auf dieser Weise möglich, einen großen Teil unserer 
qualitativen spektroskopischen Erfahrung zu erklären" (Wigner, 1927c, p. 624). 
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crystallography each crystal lattice was linked with a space group.  

 Since the Schrödinger equation was itself linear, under a linear transformation its solutions 

became linear combinations of each other. In group theory, Wigner explained, the coefficients of 

such linear combinations were called "representations" of the relevant group (Wigner, 1927c, p. 

627). He then introduced the notion of "irreducible representations", which I shall not discuss here 

further,  and showed how one could classify the solutions of a given Schrödinger equation in terms 

of  the irreducible representations of the symmetry group of the equation (Scholz, 2006, pp. 448-

451, Wigner, 1927c, p. 629). Each complete, linearly independent set of solutions corresponding to 

the same energy transformed according to one of the irreducible representations of the symmetry 

group, so that its members only combined with each other under any transformation leaving the 

Schrödinger equation invariant. 

 Wigner offered a first example of how such a group-theoretical classification would be 

physically significant: the case of a system subjected to a perturbation which reduced its symmetry 

to a subgroup of the original group. (Wigner, 1927c, pp. 632-633) For example, an external field 

introduced a privileged direction and thus broke spherical invariance, leaving a residual rotation 

symmetry with respect to its direction. As a consequence, each set of same-energy-solutions of the 

unperturbed equations split into subsets of different energy, each of which transformed according to 

an irreducible representation of the residual symmetry group. One could estimate the energy 

splitting by expressing the representations of the original group in terms of those of the residual 

subgroups (Wigner, 1927c, p. 633). It is not difficult to see how similar this reasoning was to the 

kind of problems that Wigner had earlier tackled and eventually solved with the help of 

representation theory, when he was working with Weissenberg. It is in this sense that, earlier on, I 

claimed that the path taken by Wigner on his way to learning representation theory was just as 

important as the fact that he eventually learned it:  that specific path made  him aware of the 

potential physical applications of the theory. This use of representation theory played a key role in 

Wigner's paper, which devoted much space to spectra in electric, magnetic and crossed electric and 

magnetic fields (Wigner, 1927c, pp. 643-652). 

 In the "special" part of the paper, Wigner began by listing all symmetries which came into 

questions as possible symmetry groups of the Schrödinger equation in different physical contexts: 

permutations, rotations in three-dimensional space - with or without a privileged axis - and mirror 

inversions. As I have already noted, Wigner's attention to mirror transformations can be connected 

to his experience in crystallography, where they were an essential component of space groups. A 

summary of Wigner's results in modern terms has already been given by various authors (Mehra et 

al., 2000, pp. 492-496, Scholz, 2006). I will  focus on some peculiarities of Wigner's computations 
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which are particularly revealing of his style of thinking. Since all computations were based on the 

same formula, I will only discuss those valid in absence of external field. 

  If no external force is acting on a system, Wigner said, the symmetry group R of the relevant 

Schrödinger equation will include all rotations leaving fixed the origin of the coordinate system, as 

well as all mirror transformations with respect to the same point.  Given any integer l - which is 

here purely a group-theoretical parameter -  there exist two irreducible representation of the group 

R, each containing 2l+1 linearly independent elements. One representation corresponds to proper 

rotations, the other to improper ones, which include a mirror inversion (Wigner, 1927c, p. 636). 

Wigner computed explicitly the coefficients of the representations of R for a generic value of l and, 

as he himself noted in later a correction to the paper, committed a serious error, forgetting some 

terms in the expressions (Wigner, 1927c, pp. 638-639, Wigner, 1927d). Without noticing his 

mistake, Wigner went on to try and derive the selection rule for the group-theoretical parameter l, 

which he already planned to identify with the azimuthal quantum number (Wigner, 1927c, pp. 641-

643).  To describe the intensity of a radiation process, he used the absolute value of the usual dipole 

formula from wave mechanics, which he wrote in the (rather sketchy) form: 

│∫x  ψi ψk  │(Wigner, 1927c, p. 641). 

The variable x represented here one coordinate of any of the electrons and, following Heisenberg, 

Wigner assumed it to be proportional to the corresponding component of the electric dipole moment 

("lineare Polarisation") due to that electron (Wigner, 1927c, p. 641-642). The indexes i and k 

corresponded to two different values of the group-theoretical parameter l and Wigner's aim was to 

show that, unless i and k satisfied specific conditions, the integral would vanish, leading to a 

selection rule assigning intensity zero to (i.e. theoretically forbidding) that transition. For clarity, it 

may be useful to  write down the integral in a more explicit form: 

∫ x1  ψi(x1, ..., xn) ψk(x1, ..., xn) dx1 ...dxn. 

Here, I have chosen as x the variable x1: as Wigner noted, the value of the integral is the same for 

any choice of xi and need therefore be computed only once (Wigner, 1927c, p. 842). The 

straightforward group-theoretical approach to solve this problem would have been  to consider the 

transformation properties of x1 under rotations, and argue from there at an abstract group-theoretical 

level.15 Wigner, instead, took another path: he used the explicit form of the transformation 

coefficients which he had previously computed to formulate a very convoluted argument in which 

                                                 
15 The full-fledged group-theoretical argument was given first by Weyl in his textbook "Gruppentheorie und 

Quantenmechanik" (Weyl, 1928, pp. 157-158). The proof hinges on the fact that the integral is different from zero 
only if the group-theoretical product of the two representations corresponding respectively to ψi and ψk contains at 

least one element which transforms like x, i.e. like the component of a vector. Such a term exists only if  i – k = 0 or  
±1. 
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some of the variables xi were expressed in terms of the parameters defining a generic rotation 

(Wigner, 1927c, pp. 641-644). Wigner’s argument exploited the fact that the dependence of the 

functions  ψi and ψk  from the variables xi was subject to specific restrictions due to their group-

theoretical transformation properties. By taking into account these restrictions when computing the 

dipole integral, one could see that it would be different from zero only for certain values of  i and k. 

The reasoning, which I shall not discuss here in detail, was carried out by visually representing and 

manipulating the n variables xi as n points in three-dimensional space, and in my opinion showed 

how well Wigner could cope with such complex geometrical problems, partly thanks to his own 

talent and partly to his experience in X-ray crystallography. However, this method of computation 

is also evidence that, at this  stage, Wigner still had a relatively small grasp of the power of the 

abstract group theory of the mathematicians. 

  In the end, using his (wrong) coefficients, Wigner could prove that the integral was different 

from zero only for transitions i → k where i – k =∆l = ±1 . As we have seen above, this result fitted 

spectroscopic evidence on the azimuthal quantum number, and Wigner remarked that it constituted 

an improvement with respect to the theoretical computations of Heisenberg, Born and Jordan, 

because it  excluded transitions with  ∆l = 0 (Wigner, 1927c, p. 641, note 2). This fact, he said, 

confirmed the identification of his group-theoretical parameter l with the azimuthal quantum 

number usually indicated by the same letter, which was known to obey the selection rule ∆l = ±1 . In 

fact, though, the absence of ∆l = 0 transitions was only due to Wigner's above-mentioned 

computational mistake: by adding the missing terms, he would later obtain the correct result  ∆l = 0, 

±1, in accordance with the fact that, since spin is not taken into account, the group-theoretical 

parameter l  must be regarded as corresponding to the quantum number representing total angular 

momentum, i.e. j, whose selection rule is  ∆j = 0, ±1 (Wigner, 1927d). 

 Wigner's  error suggests that, while computing the representation coefficients, he already 

had his aim in mind: reproducing the selection rules ∆l = ±1.  Thus, when he (erroneously) obtained 

this result, he felt satisfied that it was correct. Wigner used group theory - and mathematics in 

general - as an effective tool to connect to experimental evidence, and not as a means of exploring 

and refining the formal structures of quantum mechanics, as mathematicians like Weyl or von 

Neumann would do. It was this peculiar approach which led Wigner to take an interest in the 

"empirical" selection rules and connect them with the structures of group theory. In this way, a very 

fruitful heuristic method which had emerged in the context of the old quantum theory could be 

taken over into the new quantum mechanics. Thus, after having passed from the status of a 

theoretical notion to that of a purely empirical one,  spectroscopic selection rules had now found a 

new connection to mathematical physics. Even though the selection rules of empirical spectroscopy 
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were in principle something distinct from those of group-theoretical analysis, the first ones could 

be regarded as the observable signature of the second ones - just like the "absences" and "selection 

rules" of X-ray crystallography were the visible evidence of inner crystal symmetries. I would like 

to suggest that it was precisely this ambiguity that allowed the notion of "selection rules" to develop 

into a productive means of connecting theory and experiment. 

 

10. Epilogue: Selection rules, conservations laws and symmetry arguments  

 

In 1913, Bohr had introduced the notions of stationary states and quantum transitions, as well as the 

frequency conditions linking the two. Subsequently, Bohr's model had been expanded into a theory 

which led to the interpretation of some spectra in terms of "missing lines". To account for these, 

physicists proposed theoretically-based "selection principles". Eventually, this theoretical scheme to 

fit spectroscopic data to a theory came to work also in the opposite direction: having theoretically 

assumed that spectra could be interpreted in terms of quantum numbers and selection principles, 

one could use them to formulate hypotheses on how those quantum numbers and selection 

principles should look like. Thanks to group theory, this deceptively simple interpretive scheme 

could be taken over in expanded form into quantum mechanics, and eventually also in quantum 

field theory.  The encounter between spectroscopic selection rules and group theory in atomic 

spectroscopy provided the template for a new kind of symmetry argument, in which the observable 

signature of a (known or unknown) symmetry is sought in the form of a "selection rule": a missing 

radiation frequency,  decay or scattering product.  This heuristic scheme relies on two general 

theoretical premises - quantum states and perturbative transitions - and can be used to connect 

theory and experiment starting from both directions. One can employ it to classify experimental 

data, individuating regularities and interpreting them in terms of group representations. On the other 

hand, one can tentatively assume the validity of some symmetries, formulate predictions in terms of 

quantum states and allowed transitions, and compare them with experiment.  

 Moreover, Wigner himself showed how this kind of argument can be linked to the quantum 

equivalent of the classical connection between symmetries and conservation laws. In early 1928, he 

published a short study "On conservation laws in  quantum mechanics" in which the connection 

between  conservation laws and symmetries in quantum system was explicitly stated (Wigner, 

1928). This relation had been known already in matrix mechanics, but, once again, Wigner was the 

first one to draw attention to its wide-ranging physical implications, as for example the possibility 

of defining a new, purely quantum-theoretical conserved quantity, later known as "parity" (Wigner, 

1928, p. 387). Thanks to the encounter of selection rules and group theory, many other new 
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physical quantities would follow later on, as for example baryon number, strangeness, charm or 

beauty (Michel, 1989). 
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